Photoactive composite films prepared from mixtures of polystyrene microgel dispersions and poly(3-hexylthiophene) solutions.

نویسندگان

  • Mu Chen
  • Zhengxing Cui
  • Steve Edmondson
  • Nigel Hodson
  • Mi Zhou
  • Junfeng Yan
  • Paul O'Brien
  • Brian R Saunders
چکیده

Whilst polystyrene microgels belong to the oldest family of microgel particles, their behaviours when deposited onto substrates or prepared as composites have received little attention. Because polystyrene microgels are solvent-swellable, and inherently colloidally stable, they are well suited to form composites with conjugated polymers. Here, we investigate the morphology and light absorption properties of spin coated composite films prepared from mixed dispersions of polystyrene microgels and poly(3-hexylthiophene) (P3HT) for the first time. We compare the morphologies of the composite films to spin coated microgel films. The films were studied using optical microscopy, SEM, AFM, wide-angle X-ray diffraction and UV-visible spectroscopy. The films contained flattened microgel particles with an aspect ratio of ∼10. Microgel islands containing hexagonally close packed particles were evident for both the pure microgel and microgel/P3HT composite films. The latter were electrically conducting. The composite film morphology was dependent on the microgel and P3HT concentration used for film preparation and a morphology phase diagram was constructed. The P3HT phase acted as an electrically conducting cement and increased the robustness of the films to solvent washing. The composite films were photoactive due to the P3HT component. The absorbance for the films was tuneable and increased linearly with both microgel and P3HT concentration. The results of the study should apply to other organic swellable microgel/conjugated polymer combinations and may lead to new colloidal composites for future optoelectronic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Poly(3-hexylthiophene)-b-Polystyrene for Photovoltaic Application

Poly(3-hexylthiophene)-block-polystyrene (P3HT-b-PS) was synthesized by Suzuki coupling reaction between P3HT and PS, prepared by Grignard metathesis polymerization and atom transfer radical polymerization (ATRP), respectively. The formation of block copolymer was confirmed by gel permeation chromatography (GPC) and NMR. Differential scanning calorimetry (DSC) thermogram of block copolymers sho...

متن کامل

Enhanced visible photoluminescence in ultrathin poly(3-hexylthiophene) films by incorporation of Au nanoparticles.

Incorporation of non-luminescent dodecanethiolate-protected gold clusters into regioregular poly(3-hexylthiophene) films results in a 6-fold increase in the visible photoluminescence (PL) of the polymer, which arises predominantly from NP-induced structural changes in the composite films.

متن کامل

Thermal Annealing Effect on Poly(3-hexylthiophene): Fullerene:Copper-Phthalocyanine Ternary Photoactive Layer

We have fabricated poly(3-hexylthiophene) (P3HT)/copper phthalocyanine (CuPc)/fullerene (C60) ternary blend films. This photoactive layer is sandwiched between an indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT/PSS) photoanode and a bathocuproine (BCP)/aluminium photocathode. The thin films have been characterized by atomic force microscope (AFM) and ultra...

متن کامل

Preparation of ZnO-Polystyerne Composite Films and Investigation of Antibacterial Properties of ZnO-Polystyerne Composite Films

Background & Objectives: Nanotechnology is one of great important part of technology. Nanoparticles can be used in different applications for industrial, medical, military and personal use. The objectives of this study were preparation of Polystyrene/ZnO nanocomposite films via a simple method and investigation of antibacterial activity of them. Methods: Polystyrene /ZnO nanoparticle (PS/nano-...

متن کامل

A simple methodology for producing super-hydrophobic composite films on various substrates

Various nanoparticles (silicon oxide, tin oxide and aluminium oxide) were mixed with poly (methyl siloxane) (Rhodorsil 224). The mixtures were sprayed on silicon substrates resulting in the formation of a rough, two-length-scaled hierarchical structure surface layer. We report that: (i) Super-hydrophobic composite films were produced with all the particles used, (ii) The effect of the particle’...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 42  شماره 

صفحات  -

تاریخ انتشار 2015